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LE'lTER TO THE EDITOR 

Irregular solutions and completeness 

V J Menon and A V Lagu 
Department of Physics, Banaras Hindu University, Varanasi 221005, India 

Received 10 December 1981 

Abstract. It is pointed out that the bound and scattering states generated by a short-range 
two-body potential form a complete set even in the space of irregular solutions. Working 
with the relevant Wronskian relations an explicit eigenfunction expansion for the outgoing 
Jost solution is obtained. The formalism reduces to an interesting integral of spherical 
Bessel functions for the case of free particles. 

By making use of the analytic properties of the Green function, it has been shown 
(Newton 1966) that the scattering states 14') together with the bound states l$b) of 
fixed angular momentum 1 for two non-relativistic spinless particles of reduced mass 
cc (h = c = 1) form a complete set in the space of vectors IF) whose squared norm (FJF) 
is either finite or exists at least in the delta function sense for the class of two-body 
central potentials V(r )  for which the first and second absolute moments are finite. In 
most physical applications one encounters wavefunctions F(r)  = (rlF) which are regular 
at r = 0 and the expansion 

is employed to deal with such regular functions. 
The usual literature (see, for example, Newton 1966, Goldberger and Watson 

1964, Sitenko 1971) has not investigated the question whether equation (1) also holds 
for vectors If) whose wavefunction f ( r ) = ( r l f )  is not regular at r = O ,  or for which 
( f l f )  = 00. In this letter we have chosen for investigation a particular example of such 
functions, namely the irregular Jost solution 1% ) of the radial Schrodinger equation, 
and find that because ($i,Ifi) and ($(,If:) exist, the extension of equation (1) is 
possible. This we achieve, without using analyticity in any way, simply by utilising 
Wronskian relationships. These irregular solutions are of paramount importance in 
the formal development of the potential scattering theory and there is no need to 
re-emphasise their role. However, in most physical applications the irregular solutions 
are discarded owing to the blowing up of the probability density like r-121+2) near r = 0. 
Therefore, it may be thought that the validity of the completeness relation (1) in the 
space of the Jost solutions is a purely mathematical property devoid of much physical 
significance; however, we may refer to the work of Kim and Vasavda (1972) who 
have pictured a two-body resonance state as being described by an irregular solution 
f ( r ,  kj) = ( r l f i , )  of the Schrodinger equation belonging to a complex energy eigenvalue 
Ej = k: /2p ,  Im Ej < 0. It is clear that if such a state is produced in some multiparticle 
reaction, and one wishes to apply perturbation theory to it, one would like to expand 
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the total wavefunction in a complete set of regu1ur.eigenfunctions; in this light the 
eigenfunction expansion derived below assumes special significance. As a mathemati- 
cal by-product of the present investigation, we seem to have obtained a new integral 
relationship between the spherical Bessel and Hankel functions for general integer 1. 

To demonstrate this contention, we first recall the small and large r behaviour of 
the Jost, scattering and bound-state solutions respectively, 

AL'(k)(21- l)!! 
k > O  

(kr)'+' f'k k)  - 
r - 0  

A exp[i(kr - ln/2)] 
__* 

r-+m kr 

A - -{S'(k) exp[i(kr -ln/2)]-exp[-i(kr -h/2)]} 
1-00 2ikr 

( 2 b )  

where L'(k) is the Jost function for the problem, S'(k) =L"(-k)/L'(k) is the 
partial-wave S matrix, kb is a pure positive imaginary momentum corresponding to 
the bth bound state at which L'(kb) = 0, and Nb = ( - ) ' N t  is a normalisation constant. 
The constants A = ( 4 ~ ) " '  and Nb are, of course, chosen to be consistent with the 
normalisation conditions 

Employing the usual procedure for obtaining Wronskians from the differential 
equations, we find 

1 R 

dr r2$+(r, k')f+(r, k)  = ro-0  lim P- k12-kz[W(r;  k', k ) lE  (4) 
R-CO R-00 

where we have introduced a Wronskian 

and the Cauchy principal value part P because we have taken both k '  and k real 
positive. In the same way inserting the bound-state wavefunction & ( r )  in place of 
*+(r, k') we can deduce 
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with the Wronskian defined by 

(7) 

and the principal value symbol P is omitted in equation (6) remembering that k i  < 0 
and k2 > 0. 

The left-hand side of equation (4) is obviously equal to the overlap ($V I f : )  which 
should exist (at least in a delta-function sense) because the integrand behaves like 
r2  , r l  , r-u+l)- r as r + 0 and as undamped oscillations as r + 00. The right-hand side 
of equation (4) can be evaluated using the boundary conditions (2a) and (2b), yielding 

d d 
wb(r; k)="Lb(r)Z(fl(r, k))-fl(r ,  k)Z("Lb(r)) 

-(k+k') exp[-i(k'R -llr/2)]}exp[i(kR -l1r/2)]+- - 

where the last term arises from the ro+O limit. To simplify the right-hand side of 
equation (8a), we find that the piece 

1 A' 
lim P -{-(k + k') exp[-i(k'R - h/2)]} exp[i(kR - l1r/2)] 

R+w k" - k2 2k k 

21r pexp[i(k - k')R] 
= lim - 

R-w kk' k-k'  

21r 
kk' 

4iaz 
k 

= -{iv S(k - k')} 

= - S(kZ - k"). 

In the same way we can show that the remaining piece containing exp[i(k + k')R] 
gives rise to S(k + k') which vanishes in the region of positive k and k'. Hence equation 
(8a) simplifies to 

Next, the left-hand side of equation (6) is clearly equal to the overlap ( $ b l f i )  

which should exist because the integrand goes like r near r=O and as damped 
oscillations as r + 00. The right-hand side of equation (6) can be evaluated using the 
boundary conditions (2a) and (2c) and we obtain 

xexp[i(kR - h/2)]+ 
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because the exp(ikJ?) term vanishes as R + 00 and tlie last term arises from the ro+ 0 
limit. 

We have thus obtained the explicit values foi the coefficients which, upon substitu- 
tion in equation (l), yield the desired expansion for f+(r, k)  as 

The correctness of equation (10) can also be checked by starting from the right-hand 
side, evaluating the k' integral explicitly by making use of the analytic properties of 
the integrand in the k' plane (for fixed r), and finally showing that the result reduces 
to f+(r, k). 

Finally, to obtain the integral relationship between the spherical Hankel and Bessel 
functions for any I, we go over to the case of free particles (V(r)  = 0), for which we 
must do the following replacements: L'(k)-, 1, l(lb(r)+O, f+(r, k)+Ah;(kr)  and 
+-(r, k)+Ajl(kr) where hr and j l  are spherical Hankel and Bessel functions, respec- 
tively. Thus, equation (10) reduces to 

2 dk'  k"+*jl(k'r) 
rkli1 50 k2-kt2+iE ' 

h;(kr) = -- 

This appears to be a new integral involving spherical Bessel functions, not tabulated 
in the usual tables (Gradshteyn and Ryzhik 1973, Abramowitz and Stegun 1968) at 
least for general integral 1. In the special case of 1 = 0, however, the real part of 
equation (1 l a )  reads 

2 a3 k'sin k'r Io dk'  k2-kr2  cos k r=- -P  
77 

which is a standard result (Gradshteyn and Ryzhik 1973). 
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